History of Nucleic Acid Chemistry: Difference between revisions
No edit summary |
(Cleaned up the layout and grouped the two images into a gallery.) |
||
Line 6: | Line 6: | ||
The person credited with being the first to isolate DNA was the Swiss physician Friedrich Miescher. He called the biochemical substance rich in phosphorus "nuclein". The initial work is dated as having occurred in early 1869.<ref>R. Dahm, Friedrich Miescher and the discovery of DNA. Devel. Biol. 2005, 278, 274-288. https://doi.org/10.1016/j.ydbio.2004.11.028</ref> Miescher worked at the University of Tübingen at the time, and did not know what the function of nuclein was. | The person credited with being the first to isolate DNA was the Swiss physician Friedrich Miescher. He called the biochemical substance rich in phosphorus "nuclein". The initial work is dated as having occurred in early 1869.<ref>R. Dahm, Friedrich Miescher and the discovery of DNA. Devel. Biol. 2005, 278, 274-288. https://doi.org/10.1016/j.ydbio.2004.11.028</ref> Miescher worked at the University of Tübingen at the time, and did not know what the function of nuclein was. | ||
==== Structure of the DNA double helix ==== | |||
The correct structure of the DNA double helix was published by Watson and Crick in two milestone papers in 1957.<ref>Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. ''Nature'' '''1953''', ''171'', 737-738. https://doi.org/10.1038/171737a0</ref><ref>Watson, J. D.; Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. ''Nature'' '''1953''', ''171'', 964-967. https://doi.org/10.1038/171964b0 | The correct structure of the DNA double helix was published by Watson and Crick in two milestone papers in 1957.<ref>Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. ''Nature'' '''1953''', ''171'', 737-738. https://doi.org/10.1038/171737a0</ref><ref>Watson, J. D.; Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. ''Nature'' '''1953''', ''171'', 964-967. https://doi.org/10.1038/171964b0 | ||
</ref> The diffraction data was not from their own work, and the G:C base pair was incorrectly assumed to have only two hydrogen bonds. Still, the structure was a major breakthrough, as it explained how genetic information is stored and passed on to the next generation. | </ref> The diffraction data was not from their own work, and the G:C base pair was incorrectly assumed to have only two hydrogen bonds. Still, the structure was a major breakthrough, as it explained how genetic information is stored and passed on to the next generation. | ||
<br><br> | <br><br> | ||
Structure of base pairs: | Structure of base pairs: | ||
<gallery heights=150 mode="packed"> | |||
File:Guanine Cytosine base pair red bond.png|Depiction of the G:C base pair with the hydrogen bond not yet identified in the 1957 paper highlighted in red. | |||
< | File:Adenine Thymine base pair.png|Depiction of the A:T base pair. | ||
</gallery> | |||
==== Polymerase Chain Reaction ==== | |||
The polymerase chain reaction (PCR) was invented in the early 1980s by Kary B. Mullis while employed by Cetus Corporation. Mullis was awarded the Nobel Prize in Chemistry for his discovery in 1993.<ref>Mullis, K. B. The Polymerase Chain Reaction (Nobel Lecture). ''Angew. Chem. Int. Ed. Engl.'' '''1994''', ''33'', 1209-1213.</ref><ref>Process for amplifying nucleic acid sequences. US Patent US4683202A, filed on October 25, 1985.</ref> | The polymerase chain reaction (PCR) was invented in the early 1980s by Kary B. Mullis while employed by Cetus Corporation. Mullis was awarded the Nobel Prize in Chemistry for his discovery in 1993.<ref>Mullis, K. B. The Polymerase Chain Reaction (Nobel Lecture). ''Angew. Chem. Int. Ed. Engl.'' '''1994''', ''33'', 1209-1213.</ref><ref>Process for amplifying nucleic acid sequences. US Patent US4683202A, filed on October 25, 1985.</ref> | ||
Revision as of 17:15, 25 September 2024
The History of Nucleic Acid Chemistry
Milestones
Isolation of DNA
The person credited with being the first to isolate DNA was the Swiss physician Friedrich Miescher. He called the biochemical substance rich in phosphorus "nuclein". The initial work is dated as having occurred in early 1869.[1] Miescher worked at the University of Tübingen at the time, and did not know what the function of nuclein was.
Structure of the DNA double helix
The correct structure of the DNA double helix was published by Watson and Crick in two milestone papers in 1957.[2][3] The diffraction data was not from their own work, and the G:C base pair was incorrectly assumed to have only two hydrogen bonds. Still, the structure was a major breakthrough, as it explained how genetic information is stored and passed on to the next generation.
Structure of base pairs:
-
Depiction of the G:C base pair with the hydrogen bond not yet identified in the 1957 paper highlighted in red.
-
Depiction of the A:T base pair.
Polymerase Chain Reaction
The polymerase chain reaction (PCR) was invented in the early 1980s by Kary B. Mullis while employed by Cetus Corporation. Mullis was awarded the Nobel Prize in Chemistry for his discovery in 1993.[4][5]
References
- ↑ R. Dahm, Friedrich Miescher and the discovery of DNA. Devel. Biol. 2005, 278, 274-288. https://doi.org/10.1016/j.ydbio.2004.11.028
- ↑ Watson, J. D.; Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171, 737-738. https://doi.org/10.1038/171737a0
- ↑ Watson, J. D.; Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature 1953, 171, 964-967. https://doi.org/10.1038/171964b0
- ↑ Mullis, K. B. The Polymerase Chain Reaction (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1994, 33, 1209-1213.
- ↑ Process for amplifying nucleic acid sequences. US Patent US4683202A, filed on October 25, 1985.